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Abstract
Aim: Large databases of species records such as those generated through citizen 
science projects, archives or museum collections are being used with increasing 
frequency in species distribution modelling (SDM) for conservation and land manage-
ment. Despite the broad spatial and temporal coverage of the data, its application is 
often limited by the issue of sampling bias and consequently, zero inflation; there are 
more zeros (which are potentially ‘false absences’) in the data than expected. Here, we 
demonstrate how pooling species presence data into a ‘pseudo- abundance’ count can 
allow identification and removal of sampling bias through the use of zero- inflated (ZI) 
models, and thus solve a common SDM problem.
Location: All locations
Taxon: All taxa
Methods: We present the results of a series of simulations based on hypothetical 
ecological scenarios of data collection using random and non- random sampling strate-
gies. Our simulations assume that the locations of occurrence records are known at a 
high spatial resolution, but that the absence of occurrence records may reflect under- 
sampling. To simulate pooling of presence– absence or presence- only data, we count 
occurrence records at intermediate and coarse spatial resolutions, and use ZI models 
to predict the counts (species abundance per grid cell) from environmental layers.
Results: ZI models can successfully identify predictors of bias in species data and pro-
duce abundance prediction maps that are free from that bias. This phenomenon holds 
across multiple spatial scales, thereby presenting an advantage over presence- only 
SDM methods such as binomial GLMs or MaxEnt, where information about species 
density is lost, and model performance declines at coarser scales.
Main Conclusions: Our results highlight the value of converting presence– absence or 
presence- only species data to ‘pseudo- abundance’ and using ZI models to address the 
problem of sampling bias. This method has huge potential for ecological researchers 
when using large species datasets for research and conservation.
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1  |  INTRODUC TION

Species distribution modelling (SDM) is widely used to address im-
portant ecological questions about species distributions and the 
environment (Elith et al., 2011; Dormann et al., 2007; Phillips et al., 
2009). Species occurrence or abundance data from large, observa-
tional datasets such as citizen science projects, museum or herbar-
ium collections and record lists are increasingly being used in SDM 
(Pearce & Boyce, 2006; Schmeller et al., 2009; Tiago, Pereira, et al., 
2017). The extensive spatial and temporal coverage of the data, as 
well as the growing ease of online access provide numerous benefits 
over often costly and labour- intensive sampling methods employed 
in more focused scientific studies of distribution (Dickinson et al., 
2010; Dwyer et al., 2016; Gouraguine et al., 2019). Nevertheless, 
although some collections of species records can be generated 
using hypothesis- led, systematic sampling protocols (Pocock & 
Evans, 2014; Schmeller et al., 2009), much of these data comprise 
presence- only occurrence records, where there is often little infor-
mation about the source or survey effort accompanying the records 
(Boakes et al., 2010; Rocchini et al., 2011). As a result, sampling bias 
(also called sample selection or survey bias) is often present— certain 
temporal periods, geographical areas or taxa are sampled more in-
tensively or frequently than others (Bird et al., 2014; Dickinson et al., 
2010; Phillips et al., 2009).

Sampling bias in SDM can lead to over-  or underestimation of 
important species– environment relationships (Syfert et al., 2013), 
and predicted distribution maps may partly represent survey effort 
rather than species niche requirements (Mair & Ruete, 2016; Phillips 
et al., 2009). Proposed methods to correct for sampling bias gen-
erally rely on either spatial filtering of occurrence records, or the 
manipulation of background data (‘pseudo- absences’) (Boria et al., 
2014; Fourcade et al., 2014; Kramer- Schadt et al., 2013; Phillips 
et al., 2009). Both of these techniques have limitations: the former 
results in a dataset of reduced sample size and statistical power 
(Wisz et al., 2008), whereas the latter usually requires some prior 
knowledge of the source of the bias (Dudík et al., 2005; Phillips, 
2008). A third option is the use of statistical models that can ac-
count for some of the causes of sampling bias (Bird et al., 2014; Isaac 
et al., 2014), for example geographically weighted regression (GWR) 
(Brunsdon et al., 1998), or maximum entropy (MaxEnt) with a bias 
layer, although again, most of these require prior knowledge of the 
source of the bias.

One specific problem relating to sampling bias that is particularly 
noticeable in species abundance databases is zero inflation: the pres-
ence of more recorded zeros or locations where data are absent than 
expected under standard distributions (binomial, Poisson, negative 
binomial etc.) (Martin et al., 2005). These excess zeros can arise from 
multiple processes. Some are considered to be ‘true zeros’, which 
result from either ecological processes that render a site unsuitable 
for occupancy, or stochastic processes, such as a sudden random 
extinction event in an otherwise suitable location (Cunningham & 
Lindenmayer, 2005; Martin et al., 2005). In contrast, ‘false zeros’ 
are locations where a species occurs but was not recorded because 

of errors or omissions in the sampling method (Dénes et al., 2015). 
These errors are either systematic and occur repeatedly throughout 
the survey process (e.g. through a lack of detection or poor survey 
design), or are owing to sampling bias, because some geographical 
areas have not been sampled at all (Bird et al., 2014).

Generalised Linear Models (GLMs) are a common method for 
analysing relationships between species occurrences or abundance 
and environmental variables, but excess zeros are problematic for 
GLMs, and if unaccounted for, can result in biased parameter es-
timates and poor predictive power (Lambert, 1992). As a possible 
solution to this problem, zero- inflated (ZI) models and their compo-
nents (extensions of GLMs) have been widely discussed in the litera-
ture (Lambert, 1992; Welsh et al., 1996; Zuur et al., 2009). ZI models 
consist of two parts, namely a logistic component that models the 
probability of an observation being an excess zero (hereafter called 
the ‘zero component’) and a ‘count component’ that models a count 
(e.g. species abundance) under an assumed distribution (Lambert, 
1992). Both components of ZI models are capable of producing 
zeros, and a key feature is the ability to include different predictor 
combinations in each component. In other words, they can model 
the different sources of zeros independently (Wenger & Freeman, 
2008; Zuur et al., 2009).

ZI models, which require counts of occurrences (i.e. abun-
dance), are rarely considered in SDM, because most large datasets 
record species presences, not abundance. SDM methods that can 
use presence- only data, such as MaxEnt, are therefore most com-
monly applied (Fitzpatrick et al., 2013; Fourcade et al., 2014; Phillips 
& Dudík, 2008). However, the ability of ZI models to separate the 
two processes underlying the generation of zeros in a species data-
set could provide an alternative method to model and account for 
sampling bias. ZI models can be used with any species database 
that records abundance directly, or by aggregating presence- only or 
presence– absence data into counts of occurrence. In this study, we 
therefore propose ZI models as a new, alternative method to address 
problems of sampling bias in SDM. We present here the results of 
a series of simulations, based on hypothetical ecological scenarios 
representing the large- scale collection of species occurrence data, 
that aim to address three particular research questions.

Our first research question is to test our main theory of whether 
sampling bias (resulting in excess ‘false’ zeros) can be modelled and 
accounted for using ZI models, in order to improve species distri-
bution predictions. ZI models have been used effectively to model 
true and false zeros in ecological count data, such as when modelling 
the abundance of rare species (Cunningham & Lindenmayer, 2005; 
Martin et al., 2005; Welsh et al., 1996). They are also particularly 
prevalent in the field of occupancy- abundance modelling (Sileshi 
et al., 2009; Smith et al., 2012), especially when there are false zeros 
in the data owing to systematic sampling errors from imperfect de-
tection (Sólymos et al., 2012; Wenger & Freeman, 2008; Williams 
et al., 2016). However, research into zero inflation caused by spatio- 
temporal sampling bias in species occurrence data is scarce. A few 
studies have used ZI models to identify and quantify sources of bias 
in species data (Dwyer et al., 2016; Tiago, Ceia- Hasse, et al., 2017; 
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Williams et al., 2016), yet none has tested the ability of the models 
to produce accurate predictions of species distributions from biased 
data. We outline through our simulations how accurate distribution 
maps can be produced using ZI models in this way, and we describe 
the required criteria during model fitting and prediction for this to 
occur. In particular, our simulations also address our second research 
question: under what levels of zero inflation is our ZI model method 
most appropriate?

Our final research question considers the issue of scale, and 
the benefits of pooling fine- scale occurrence data to model 
occurrence density across coarser spatial scales. Species pres-
ence is normally modelled at the smallest spatial scale (grid cell 
size) possible, given the resolution of the records and environ-
mental layers used to build the model. Counting or aggregating 
presences across grid cells at a larger spatial scale to generate 
‘abundance’ data intuitively seems to be a bad idea, because it 
throws away information about the precise location of the re-
cords. However, this may be inevitable if predictor layers have 
lower spatial resolution than occurrence location data, and we 
propose here that it may actually present considerable advan-
tages. Aggregated counts of occurrences are commonly not a 
direct measure of true abundance (the total number of individ-
uals of the target species), since each raw occurrence often rep-
resents a locality which is home to several or many individuals. 
Regardless, modelling ‘abundance’, and any zero inflation therein, 
may give important clues to sources of bias in the data which are 
not obvious in the raw occurrences, and the benefits of being 
able to identify and eliminate bias could outweigh the costs of 
any loss of spatial resolution caused by aggregation. Therefore, 
counting occurrence records at larger spatial scales in order to 
model ‘occurrence density’ may be a better alternative to tra-
ditional presence- only SDM methods. Indeed, abundance mod-
els have been shown to perform better than presence– absence 
models fitted using the same data across multiple spatial scales 
(Howard et al., 2014; Johnston et al., 2015).

Other methods do exist that propose aggregating occurrences 
into counts of ‘abundance’ that may also provide advantages when 
using spatially biased species data, including Poisson point models 
(Komori et al., 2020; Renner et al., 2015). These models can in-
corporate bias predictors when modelling intensity rather than oc-
currences across the study area. Nevertheless, they still require a 
priori knowledge about potential bias predictors, whereas we show 
here that ZI models are able to provide an indication of potential 
sources of sampling bias in the data when the exact sources are 
unknown.

We do not attempt to provide a detailed statistical summary of ZI 
models and theory (there is much associated literature already avail-
able), but aim to draw attention to the main modelling methods and 
usefulness of ZI models for ecological researchers and species dis-
tribution modellers dealing with large, biased databases. We argue 
that ZI models can provide insight into, and correction methods for, 
the bias in large species databases, and that they can be powerful 
and effective SDM tools.

2  |  MATERIAL S AND METHODS

Our general approach was to use ZI models to predict the observed 
number of species occurrences per grid cell for a series of simulated 
species using predictors of either the biology of the species and/or 
sampling bias in the data. We envisaged a large species for which 
it is theoretically possible to survey all individuals in a landscape 
(e.g. trees, large animals). The true distribution of all individuals was 
simulated for each species, and this distribution was then sampled 
incompletely, with or without spatial sampling bias. Before sampling, 
the true abundance of the species could be calculated by summing 
occurrences per grid square. But with incomplete sampling, the ob-
served or ‘sampling abundance’ per grid cell is an underestimate. An 
alternative way to view our simulations, which is more realistic for 
species which are small or hard to enumerate (e.g. smaller plants, 
most insects), is to consider each occurrence in the raw data to rep-
resent a recorded encounter with the species at a local site which 
may contain many individuals. In such cases, the models do not 
strictly predict abundance, but instead they predict what we might 
call ‘occurrence density’.

As a result of the two- part nature of ZI models, two types of 
abundance predictions can be produced. Assuming that all excess 
zeros arise from incomplete sampling, the first type of prediction 
is of true, biological abundance (or occurrence density) across the 
study area, created only from the count component of the model, 
which we call here the ‘count abundance prediction’. This is likely to 
be the desired modelling outcome, especially for conservation and 
land management planning. The second type of prediction, which 
we here call the ‘sampling abundance prediction’, comes from the 
whole model (combining both the count and zero components) and 
therefore represents the predicted abundance (or occurrence den-
sity) that would be recorded if sampling was carried out in the same 
way as when collecting the data that were used to fit the model. Bias 
in sampling will be reflected in this second prediction. However, if 
some excess zeros arise also from biological zero inflation, for exam-
ple if a species is clustered, the zero component will reflect some of 
the underlying biological processes as well as the sampling bias. In 
this case, the count abundance prediction will only partially reflect 
the true species abundance. The best type of prediction to use will 
therefore depend on the estimated strength of biological zero infla-
tion versus the bias in the data.

2.1  |  Simulation study area and predictor variables

We simulated the occurrence of a hypothetical species in a study 
area that consisted of a 100 × 100 cell grid at 1- km2 resolution 
placed randomly within the boundary of England (Figure 1a). The 
total area covered by the grid is therefore 10,000 km2 and there are 
10,000 individual grid cells. Two predictor variables were selected 
across this area. The first was a ‘biological predictor’ that we chose 
to be ‘altitude’, which we used to define the relationship between 
the simulated species occurrences and environment (Meynard et al., 
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2019). Real values for altitude (m) across the study area were ob-
tained from WorldClim DEM (accessed 10/05/18) at a 1- km2 resolu-
tion and ranged from 0 to 284 m above sea level (Figure 1b). The 
choice of biological predictor for a simulation study of this sort is 
necessarily somewhat arbitrary, but we chose altitude because it is 
both a plausible predictor of occurrence for a range of organisms, 
and it is quite strongly spatially autocorrelated, an important possi-
ble source of biological zero inflation in the abundance data formed 
when occurrences are counted across grid cells at intermediate spa-
tial scales. The actual biological mechanism underlying the relation-
ship between altitude and species occurrences is not important for 
this study, but altitude is a good proxy for a suite of environmental 
variables such as temperature or precipitation commonly used in 
SDM which have direct effects on species distributions.

Because altitude is spatially autocorrelated, and so is the sam-
pling bias we wanted to investigate (see below), there was a risk that 
biological and sampling bias predictors in our simulations could cor-
relate: depending on the positions of the simulated towns on our 
map, there could be a strong correlation between real altitude and 
sampling effort. Thus, in order to allow us to investigate the impact 
of sampling bias completely independently of the biological predic-
tor, we also generated an alternative ‘biological predictor’ with no 
autocorrelation: a spatially random control variable. This control 

variable (henceforth labelled ‘altitude_randomised’) was created by 
randomising the real altitude values across the study area at a 1- km2 
resolution (Figure 1b), and hence removed any correlation between 
altitude and distance from town.

The second predictor of observed species occurrence was a ‘bias 
predictor’ (‘distance from nearest town’) which affected the virtual 
sampling of the simulated species. We assumed that the greater 
the distance from a town, the lower the feasibility and likelihood of 
sampling occurring, as has previously been seen in ecological studies 
(Kadmon et al., 2004; Parnell et al., 2003; Reddy & Dávalos, 2003). 
Unlike with altitude, we chose to simulate a hypothetical bias layer 
rather than use values based on the locations of real towns, in order 
to ensure the lowest possible correlation between the two predic-
tors, although some correlation between them was likely because 
of spatial autocorrelation in both. Within the study area, 10 points 
representing ‘town centres’ were randomly placed, and the distance 
from the nearest town (m) was calculated for each grid cell, creating 
a continuous predictor layer at 1- km2 resolution across the study 
area. To reduce the influence of collinearity between predictors, the 
process of generating the ‘town centres’ was repeated 10 times, cre-
ating 10 sets of randomly placed ‘town centres’ (Appendix S1, Figure 
S1.1). As a result, mean Pearson's correlation coefficients across the 
10 repetitions show weak correlations between the bias predictor 

F I G U R E  1  (a) Simulation study area consisting of a group of 100 × 100 grid squares of 1- km2 size randomly placed within England 
covering a total area of 10,000 km2 (outlined in red) (left). (b) The biological predictors used to fit the models: altitude (m) (top) and 
altitude_randomised (m) (randomised altitude layer with no spatial autocorrelation, labelled here as ‘altitude_2’) (bottom) shown for the 
study area. (c) A simulated species with 5000 occurrence points showing no preference for altitude (random species) (top), a preference for 
high altitudes based on a logarithmic scaler of altitude (altitude species) (middle) and a preference for high altitudes based on a logarithmic 
scaler of altitude_randomised (altitude_randomised species) (bottom). Although the occurrence points in this bottom map appear randomly 
distributed across the study area (similar to that of the ‘random species’ in the top map), it is actually only the altitude values that are 
randomly distributed (in the ‘altitude randomised’ layer): species occurrences are still placed based on preferring high- altitude values, so are 
not actually random with respect to the environmental predictor

(c)(b)(a)

Altitude (m)

Altitude_2 (m)
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‘distance from nearest town’ and the biological predictor ‘altitude’ 
(r = −0.0499, SD ±0.228), and even weaker correlations with the 
biological predictor ‘altitude_randomised’ (−0.0044, SD ±0.012).

To summarise, we had three variables in total across the simu-
lation study area: two biological predictors (‘altitude’ and ‘altitude_
randomised’) and one bias predictor (‘distance from nearest town’). 
All predictors were centred (the mean of each predictor was sub-
tracted from each value of the predictor) and scaled (the centred 
values were divided by the standard deviation of the predictor val-
ues) so that the differences in units of the predictors were removed.

2.2  |  Simulating the virtual species

To obtain counts of ‘abundance’ to use in ZI models, we first simu-
lated species occurrences across the study area and then aggregated 
them into counts of ‘abundance’ (alternatively interpreted as occur-
rence density— see above), because we assumed that the simulated 
distribution of occurrences was the complete true distribution, all 
other locations are assumed to be ‘true absences’. Therefore, when 
aggregating the raw occurrence points into ‘abundance’ counts, a 
value of 0 represented a true absence and any value greater than 0 
represented a true presence.

The recommended first step in a simulation study is to define 
the relationship between the environment and occurrence points 
(Meynard et al., 2019). We modelled the distributions of three sim-
ulated species each with 5000 occurrence points (Figure 1c). The 
occurrence points of the first species (‘random species’) were sim-
ulated randomly across the study area, and show no preference for 
any environmental condition. The second and third species were 
simulated based on the two biological predictors (‘altitude’ and ‘alti-
tude_randomised’) and were assumed to favour high altitudes; these 
species were named ‘altitude species’ and ‘altitude_randomised spe-
cies’ respectively. We chose these three scenarios in order to cre-
ate datasets in which different kinds of zero inflation occur. For the 
random species, zero inflation can only occur as a result of sampling 
(where sites which are not sampled might be incorrectly recorded as 
zeros), while for the altitude species and altitude_randomised spe-
cies, zero inflation can result both from sampling and from the fact 
that grid cells are potentially not suitable for the species because of 
environmental conditions.

We then simulated the effect of the relationship between our 
biological predictors and species occurrences by creating layers of 

the probability of occurrence which varied according to altitude or 
altitude_randomised (see Meynard & Kaplan, 2013; Meynard et al., 
2019). Initially we tried using a linear relationship between the alti-
tude predictor layers and probability of occurrence, but this intro-
duced relatively little zero inflation in the data. For the purposes of 
investigating sampling bias and zero inflation, we therefore chose 
to use a logarithmic relationship, whereby the probability of oc-
currence rapidly increases initially with small increases in altitude, 
but gradually tapers off at higher altitudes. This heavily disfavours 
low- altitude values, and the majority of these will be assigned low 
probability values close to zero. Hence, biological aggregation of the 
occurrence points was effectively increased, yielding greater zero 
inflation. Each biological predictor was resampled to a 100 × 100 m 
resolution across the study area, and were then rescaled using the 
‘rescale by function’ tool in ARCGIS version 10.3.1 (ESRI, 2013), such 
that the new probability of occurrence layers (ranging between 0 
and 1) was logarithmically related to the biological predictors.

Five thousand occurrence points were placed across the study 
area (using the ArcGIS tool: ‘Create Spatially Balanced Points’) based 
on these altitude and altitude_randomised occurrence probabil-
ity layers. Due to computation limitations of the ‘Create Spatially 
Balanced Points’ tool, only one occurrence point can be placed 
within a single raster cell. Therefore, a resolution of 100 × 100 m 
was chosen for the probability layers so that up to 100 species oc-
currences could be placed in each 1- km2 grid cell. Although visually 
the altitude_randomised species appears to be randomly distrib-
uted across the study area, it is actually the underlying altitude grid 
square values that are randomised: occurrences of the altitude_ran-
domised species still occur at higher densities in grid squares with 
higher altitude values. As we used a logarithmic species response to 
the altitude_randomised layer, significant (biological) zero inflation 
still occurs in the raw data: occurrences are unlikely in low- altitude 
grid cells, generating lots of true zeros when occurrences were 
counted per grid cell (Table 1). Only the random species distribution 
is completely random across the study area.

Finally, true (raw) species abundance (total number of occur-
rence points) was calculated for each 1- km2 grid cell. We felt the 
chosen grid scale was appropriate because, although the maximum 
abundance per grid cell is strictly 100, no grid cells reached this value 
(the maximum was six occurrences per 1- km grid cell), and we there-
fore assumed that it was unlikely that the shape of the distribution 
of abundances would be significantly affected by the upper bound 
(i.e. unbounded distributions such as Poisson or negative binomial 

Source of zero inflation

True abundance 
(before sampling) Random sampling Biased sampling

Species

Random No zero inflation Sampling Sampling

Altitude Biological Biological and sampling Biological and sampling

Altitude 2 Biological Biological and sampling Biological and sampling

TA B L E  1  Sources of zero inflation in 
the simulated species occurrence data
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were likely to be appropriate). In addition, using this grid scale sets 
up a situation where location data are available at a higher resolu-
tion than the environmental predictors. Hence, we are simulating a 
situation in which modellers must make a decision about how to ag-
gregate high- resolution data across grid cells to create models which 
predict species distributions based on lower resolution environmen-
tal predictors.

2.3  |  Simulating the sampling strategies

We considered two sampling strategies across the study area to rep-
resent alternative scenarios of ecological data collection. The first 
is random sampling, where every 1- km grid cell has an equal chance 
of being visited and sampled. If visited, we assume all species oc-
currences in the cell are recorded (i.e. there is no detection error) 
and the result is the true (raw) abundance (count of all occurrences) 
for each visited grid cell. The second sampling strategy is affected 
by spatial sampling bias and relates to the ‘bias predictor’, where 
the probability of a grid cell being sampled decreases as distance 
from the nearest ‘town centre’ increases. The grid cells selected for 
this strategy were chosen based on a probability layer created using 
a logarithmic scaler of the ‘distance from nearest town’ predictor, 
again using the ‘rescale by function’ ArcGIS tool. This time high prob-
ability values close to 1 were assigned to cells with small numerical 
values, that is cells closer to towns and more likely to be sampled, 
whereas low probability values close to 0 were assigned to cells with 
large ‘distance from nearest town’ values. For each strategy, 2000 
grid cells (20% of the total) were sampled and species abundance 
was noted for each one. All other (unsampled) squares were assigned 
an observed abundance of zero, creating a ZI dataset. All sources of 
zero inflation in the simulated species abundance data before and 
after sampling are shown in Table 1.

2.3.1  |  Simulation 1: investigating the accuracy of 
species distribution maps from ZI models

To address our first question regarding the accuracy of ZI model 
predictions of abundance, we focused initially on the performance 
of ZI Poisson models, and how this compared with equivalent con-
ventional Poisson GLMs. We include comparisons between (a) ZI and 
GLM models, (b) count and sampling abundance predictions from ZI 
models and (c) alternative ZI models fitted using different combina-
tions of biological and bias predictors.

We chose to fit four GLMs and six ZI models for each of the three 
sets of species abundances per 1- km2 (random, altitude and altitude_
randomised), all fitted with a Poisson distribution but with different 
combinations of the biological or bias predictors (Table 2). These in-
cluded combinations where different predictors were tested in the 
count and zero components of the ZI models. Where the biological 
predictor was included, models for the ‘altitude species’ were fitted 
using altitude as a predictor, and models for the altitude_randomised 

species were fitted using altitude_randomised. Model fitting was re-
peated 10 times, each time using a different set of simulated ‘town 
centres’ (Appendix S1, Figure S1.1). Thus, there are three species 
(random, altitude and altitude_randomised), two sampling strategies 
(random and biased) and 10 repeats, resulting in 60 total simulation 
runs. All ZI and GLM models were fitted in R version 3.6.3 (R Core 
Team, 2019) using packages ‘stats’ (R Core Team, 2019) and ‘pscl’ 
(Zeileis et al., 2008).

Abundance predictions from each model were created using 
10- fold cross- validation, where the data were split into 10 subsets 
and each subset was used iteratively as the test data for which pre-
dictions were created and the other nine subsets as training data. 
For the ZI models, both count abundance and sampling abundance 
predictions were evaluated. Model predictions were evaluated using 
a novel metric based on the probability of obtaining the model pre-
dictions, that we named ‘deviation from the best model’ (D) (See 
Appendix S3 for more information). We used this metric, rather than 
conventional measures of performance (e.g. root mean square) typ-
ically employed in presence- only or presence– absence modelling, 
because it produces a measure of fit for count or abundance predic-
tions which is independent of the mean. D ranges from a minimum of 
1 for a perfect model where model predictions are equal to the true 
raw abundance data, and increases without limit as model predictive 
performance decreases. Spearman's rank correlation coefficients (rs) 
were also used to compare model abundance predictions to the orig-
inal model covariates.

To check that our results were not overly sensitive to the choice 
of predictor, simulations using average temperature (oC) (WorldClim, 
accessed 10/05/18) at a 1- km2 resolution, as an alternative biological 
predictor, were also carried following the same methodology (see 
Appendix S2)— the results were parallel to those of altitude, and so 
were omitted from the main results and discussion.

TA B L E  2  Ten predictor combinations were considered when 
modelling the simulated species distributions

Model
Predictors (GLM/ ZI count 
component)

Predictors (ZI 
zero component)

GLM1 Null (No predictors) N/A

GLM2 Biased N/A

GLM3 Biological N/A

GLM4 Biological + bias N/A

ZI1 Null (No predictors) Null

ZI2 Biological + bias Biological

ZI3 Biological Biological + bias

ZI4 Biological Biological

ZI5 Bias Bias

ZI6 Biological + bias Biological + bias

Four Generalised Linear Model (GLM) and six zero- inflated (ZI) model 
structures were considered using combinations of the biological 
predictors (either altitude or altitude_randomised) and the bias 
predictor (distance from nearest town), including different combinations 
in the count and zero components of the ZI models.
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2.3.2  |  Simulation 2: examining the impact of the 
extent of zero inflation in the data

To address our second question, about the effect of varying the ex-
tent of zero inflation in the data (both as a result of biological pro-
cesses and sampling bias) on the effectiveness of the ZI models, we 
carried out a second simulation. In our first simulation, we assumed 
20% of grid cells were sampled, but in Simulation 2 zero inflation 
resulting from sampling bias was adjusted by varying the number 
of cells sampled from the grid, ranging from 1000 (10%) to 10,000 
(100%) at 10% increments. Therefore, the highest level of zero infla-
tion occurred when 1000 cells were sampled, and thus 9000 cells 
were assigned an abundance of zero simply because they were not 
sampled, and the lowest level of zero inflation occurred when 10,000 
cells were sampled and none was assigned an abundance of zero for 
this reason. At the same time, zero inflation resulting from biological 
processes was adjusted by adding a threshold below which the alti-
tude species can no longer survive, but keeping constant the number 
of true occurrence points generated each time. With higher altitude 
thresholds, the species occurrences were increasingly aggregated, 
and more cells were classified as true zeros. Altitude across the 
study area ranged from 0 to 284 m, so we tested threshold values 
of 0, 50, 100, 125, 150, 175 and 200 m (see Appendix S1, Table S1.1 
for number of cells above each threshold). Above these thresholds, 
species occurrences were placed in a similar way based on weighted 
probability calculated from a logarithmic scaler of the original alti-
tude predictor as described previously. Both the random species 
and altitude species were examined in scenarios with varying sam-
ple sizes, but obviously only the latter was tested using the altitude 
threshold method.

Based on the results of Simulation 1, we selected three predic-
tor combinations to fit the models and create predictions. These in-
cluded the GLM with both the bias and biological predictor (GLM4) 
and two of the ZI models which differ only in the inclusion (ZI6) 
or exclusion (ZI2) of the bias predictor from the zero component 
(Table 2). Although theoretically a ZI model that has only the biolog-
ical predictor in the count component, but both the biological and 
bias predictors in the zero component (as with ZI3), would be the 
most obvious choice, in the real world the bias predictor may also 
have some biological influence on the species distribution, and the 
researcher may not be sure whether it is a better predictor of bias or 
biology. We therefore chose to use ZI6 rather than ZI3, to simulate 
better a real- world modelling scenario in which the causes of bias 
are unknown.

Model performance (D) was calculated for each simulation run 
with a particular combination of sample size and altitude threshold. 
Finally, in order to evaluate the improvement in model performance 
created by adding predictors of zero inflation, the difference in ‘D’ 
was calculated between each model (GLM4 and ZI2, GLM4 and ZI6, 
and ZI2 and ZI6). This was repeated using both count abundance and 
sampling abundance predictions for the ZI models. Again, model fit-
ting was repeated 10 times each with two sampling strategies (ran-
dom and biased). Therefore, there were 200 simulation runs for the 

random species (10 repeats, two sampling strategies and 10 levels 
of sampling zero inflation) and 1400 simulation runs for the altitude 
species (10 repeats, two sampling strategies, 10 levels of sampling 
zero inflation and seven altitude thresholds (levels of biological zero 
inflation)).

2.3.3  |  Simulation 3: comparing abundance versus 
presence– absence when aggregating spatial data

Often when fitting distribution models the only data available are 
presence- only, and multiple species occurrences within a grid cell 
are usually classified as a single presence. Often the predictors are 
only available at a coarser spatial scale than the species occurrence 
data, forcing the modeller to aggregate occurrences into coarser 
scale presence- only or presence– absence estimates. The coarser 
the resolution at which the distribution is modelled, the more in-
formation is lost about both the precise location of species occur-
rences, and species abundance (or occurrence density). However, 
if occurrences are instead aggregated into count data, information 
about abundance or occurrence density is retained at all scales, 
which may be more beneficial to conservation purposes. Therefore, 
even if only presence- only data are available, ZI models fitted at a 
larger spatial scale using the summed counts of occurrence may 
provide a better modelling method than traditional presence- only 
SDM that aggregate multiple occurrences into presence– absence 
data. This effect is likely to be more pronounced when the species 
data are biased, because ZI models attempt to model the excess 
zeros from sampling bias, whereas other methods, unless they ex-
plicitly incorporate bias correction, make no attempt to model or 
remove the bias.

Our final simulation study addressed this question by compar-
ing the performance of Poisson GLM and ZI models predicting the 
abundance of the altitude species (as was carried out in Simulation 1) 
with two commonly used modelling methods that predict presence– 
absence: presence– absence binomial GLMs and presence- only 
MaxEnt models. This represents a scenario where the raw species 
occurrences (simulated at a 100- m resolution) are available at a 
greater resolution than the predictors (at a 1- km resolution), so the 
modeller is required to make a decision on how to aggregate the 
data.

To fit the binomial GLM presence– absence models, the source 
data for which need to be in the form of presence– absence rather 
than abundance, simulated 1- km cells that received an abundance 
count of zero based on either the random or biased sampling strat-
egy for the ZI models in Simulation 1 (i.e. 80% of cells that were not 
considered to have been sampled) were classified automatically as 
an absence, and any cell with species occurrences that was sampled 
was classified as a presence. All binomial GLMs were fitted using the 
package ‘stats’ in R. As with Simulation 1, two GLMs were fitted, 
one with only the biological predictor (‘Binomia- GLM1’ equivalent 
to GLM3) and one with the biological and bias predictors (‘Binomial- 
GLM2’ equivalent to GLM4). Binomial occurrence predictions (i.e. 
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predicted probability of presence) were estimated across the study 
area from each model using 10- fold cross- validation.

Two MaxEnt presence- only models were also fitted to the alti-
tude species occurrence data, one with altitude as the only predictor 
(‘Maxent1’) and one with both altitude and distance from nearest 
town as predictors (‘Maxent2’). To produce presence- only data col-
lected under a random or biased sampling strategy, only occurrence 
points at a 100- m resolution that fell within a 1- km cell that had been 
sampled for the ZI models in Simulation 1 were retained; only these 
cells would be classified by MaxEnt as a presence. Each model was 
fitted using the ‘dismo’ package (Hijmans et al., 2017) in R, at a 1- km 
resolution with 10,000 randomly selected background ‘pseudo- 
absences’ and 10 repetitions across each set of town centres.

Comparing the performance of count/abundance models 
(Poisson GLM and ZI models) and presence/presence– absence mod-
els (MaxEnt and binomial GLMs) required evaluation metrics which 
could work with both types of model. As it is less feasible to convert 
presence– absence predictions to abundance to use ‘D’, two other 
evaluation metrics were selected: Area under the curve (AUC) and 
the Spearman's rank correlation coefficient (rs) between the model 
predictors (‘altitude’ and/ or ‘distance from town’) and each of the 
model predictions of count/abundance (GLM/ ZI) or habitat suitabil-
ity (MaxEnt/ binomial GLM). In order to calculate AUC for the ZI 
and GLM models, abundance predictions were converted to binary 
presence– absence predictions, using an abundance threshold above 
which the species was considered to be predicted to be present. 
Because some models produced predicted abundances that all fell 
below 1, the threshold for conversion was chosen to be the mean 
abundance prediction across all grid cells for each individual model, 
that is the threshold varied across each GLM or ZI model. Mean AUC 
was calculated across the 10 repetitions for each model based on 
the presence– absence predictions for all models compared to the 
true presence– absence based on all occurrence locations across the 
study area. It should be noted that neither of these metrics offer a 
perfect measure of model performance. AUC causes a loss of infor-
mation from the Poisson GLMs and ZI models, which are designed to 
predict abundance, while Spearman's rank retains more of the infor-
mation in the predictions of both types of model, but is necessarily 
relatively crude.

Finally, in order to assess the impact of the scale of data aggrega-
tion on the performance of abundance and presence– absence mod-
els, additional models were fitted and compared across two other 
scales of increasing coarseness: 2 and 5- km. The larger the grid cell, 
the larger the mean count of occurrences per cell, and hence the 
more data potentially lost by converting to presence– absence. ZI 
count abundance predictions at a 2 and 5- km scale were obtained 
following the methodology of Simulation 1 using the ZI6 model 
structure and again converted to presence– absence predictions. 
MaxEnt and binomial GLM presence– absence predictions at a 2 and 
5- km scale were obtained following the methodology outlined pre-
viously in Simulation 3. Model predictors (altitude and distance from 
town) were converted to coarser scales by calculating the mean val-
ues of each predictor at a 1- km resolution for each 2 or 5- km cell. 

As before, all predictions were evaluated using AUC and Spearman's 
rank correlation coefficient (rs).

3  |  RESULTS

3.1  |  Simulation 1: investigating the accuracy of 
species distribution maps from ZI models

The results from Simulation 1 confirm that count abundance predic-
tions from the ZI models provide the most accurate estimates (ac-
cording to the metric D) of true species abundance (Figure 2 and 
Appendix S1, Figure S1.2). Estimating true abundance based purely 
on the biology of the species rather than sampling processes is usu-
ally the aim of ecological research, and these results suggest the 
count abundance predictions are most likely able to fulfil these aims. 
In contrast, all GLMs are poor at predicting true abundance because 
they do not separately model the excess (false) zeros generated 
by grid cells that have not been sampled. The problem is exagger-
ated when sampling is not just incomplete, but is also biased; if the 
GLM includes a predictor which is correlated with sampling effort 
(distance from nearest town), the model performs even less well 
(compare pink and blue bars for GLM3 (without bias predictor) and 
GLM4 (with bias predictor) in Figure 2) because it detects a spuri-
ous negative association between this predictor and abundance (top 
panels, Appendix S1, Figure S1.3). Similarly, ZI sampling abundance 
predictions (predictions from the whole model that potentially in-
clude the influence of sampling bias) perform poorly; rather than es-
timating true abundance, reflecting the species niche, they predict 
abundance as it would appear to observers employing each sam-
pling strategy (Figure 2 and Appendix S1, Figure S1.2). Again, these 
predictions are particularly poor when sampling is biased (compare 
pink and blue bars for ZI2 and ZI6 in Figure 2). These findings hold 
true for all three species (altitude, altitude_randomised and random) 
(Appendix S1, Figures S1.2 and S1.3).

The ability to model excess zeros separately led to dramatically 
improved predictive power of true abundance for all ZI models (see 
count abundance predictions in Figure 2 and Appendix S1, Figure 
S1.2), although one (ZI2) performed relatively less well than the oth-
ers when sampling was biased (Figure 2 and Appendix S1, Figure 
S1.2). In ZI2, the bias predictor was included in the count component 
but not the zero component, meaning that like the GLMs it detected 
a spurious negative association between abundance and distance 
from the nearest town (middle panels, Appendix S1, Figure S1.3); if 
they included the bias predictor, the other ZI models (e.g. ZI3 or ZI6) 
correctly detected that it was positively associated with the proba-
bility of an excess zero being recorded (lower panels, Appendix S1, 
Figure S1.3).

Predicted distribution maps based on both the count abun-
dance predictions and sampling abundance predictions also sup-
port these findings (Figure 3 and Appendix S1, Figure S1.4). Maps 
produced using ZI count abundance predictions that account for 
bias where necessary (i.e. including predictors of bias in the zero 
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component when sampling is biased) correlate strongly with the 
biological predictor layer (altitude) (rs > 0.9) and show little influ-
ence of bias (distance from towns) (Appendix S1, Figure S1.5). When 
sampling is biased, neglecting to account for the bias in the zero 
component, or using the sampling abundance predictions both re-
sult in low- accuracy distribution maps that correlate more strongly 
with the bias predictor (rs value between −0.64 and −0.71) and less 
strongly with the biological predictor (rs values between 0.60 and 
0.74) (Appendix S1, Figure S1.5). Distribution maps produced by the 
GLMs were also less accurate when sampling was biased and pre-
dictors correlating with bias were included (Figure 3 and Appendix 
S1, Figure S1.4). Maps from the GLMs which include the bias predic-
tor (GLM4) show a strong influence of sampling bias similar to that 
seen in the ZI sampling abundance predictions. These maps show 
relatively weak correlations to the altitude predictor (rs = 0.60) com-
pared to their counterpart GLMs that do not include the bias pre-
dictor (GLM3) (rs = 0.99) (Appendix S1, Figure S1.5). The prediction 
map from the GLM including both the biological and bias predictors 
(GLM4) with biased sampling also shows a strong correlation to the 
bias predictor (rs = −0.72).

Additional maps that depict the probability of each grid cell being 
an excess zero (i.e. predictions from the zero component of a ZI 
model) further highlight the ability of ZI models to model separately 
the biological and sampling processes, as well as provide insight into 
the nature of bias in the species data (Figure 3 and Appendix S1, 
Figure S1.4). This means that in real studies in which the sources 
of sampling bias are unknown, inclusion of predictors that may cor-
relate with sampling bias (e.g. distance to towns or roads, accessi-
bility, land use etc.) in both the count and zero components of ZI 
models can help to both model and identify likely causes of bias. 
This is a unique feature of the ZI models, and is something which 
the GLMs are unable to reproduce; these models cannot provide in-
sight into the bias or prediction maps that eliminate sampling effects 
within the data.

3.2  |  Simulation 2: examining the impact of the 
extent of zero inflation in the data

Real species occurrence or abundance data will suffer from vari-
able levels of zero inflation resulting from both biological and sam-
pling processes. Therefore, the better performance of ZI models 
compared with GLMs described in Simulation 1 may not occur in 
all circumstances, so exploring this issue was our aim of Simulation 
2. As anticipated, ZI count abundance predictions and GLM abun-
dance predictions have similar accuracy when the data are not zero- 
inflated; when the whole study area is surveyed, all absences are 
‘true absences’, the species is randomly distributed with no biologi-
cal zero inflation and the difference in performance is zero (Figure 4, 
see random species (R) in left and middle panels). When consider-
ing the random species only (i.e. with no biological zero inflation), as 
less of the study area is surveyed, zero inflation as a result of sam-
pling increases, and therefore the effectiveness of ZI model count 
abundance predictions improves in comparison to GLMs. Although 
this phenomenon occurs under both sampling strategies, it is most 
noticeable when both sampling is biased and that bias is accounted 
for in the model (e.g. by including the bias predictors in the ZI zero 
component as in ZI6).

As with the random species, when there are high levels of in-
complete sampling for the altitude species (e.g. ~20% or fewer cells 
are sampled), ZI model count abundance predictions are consis-
tently better than GLM predictions, regardless of biological zero 
inflation (Figure 4, left and middle panels). However, as more of 
the area is surveyed (>20%), the difference in performance de-
creases. At low levels of biological zero inflation, this difference 
tends towards zero. However, at higher levels of biological zero 
inflation, GLM predictions are actually more accurate than the ZI 
model count abundance predictions under both random and bi-
ased sampling scenarios. This can best be understood by looking 
at Appendix S1, Figure S1.6 showing the results based on sam-
pling abundance predictions from the ZI model, rather than count 
abundance predictions; in contrast to the count abundance predic-
tions, as biological zero inflation increases, ZI sampling abundance 

F I G U R E  2  Evaluation of abundance predictions (based on 
D = ‘deviation from the best model’) for a hypothetical organism 
with occurrences simulated based on a preference for high altitudes 
(altitude species). Mean D values (±SE and data range) are shown 
for each sampling strategy (random or biased) across the 10 model 
repetitions. (a) (left) shows the evaluation of the count abundance 
predictions (from the zero- inflated (ZI) model count component 
only) from one model that accounts for sampling bias in the zero 
component (ZI6) and one model that does not (ZI2). (b) (right) shows 
the evaluation of the sampling abundance predictions (predictions 
from the whole model, and thus can be obtained from both ZI 
models and Generalised Linear Models (GLMs)) for four models: the 
same two ZI models as in (a), along with two GLMs: GLM3 including 
only the biological predictor and GLM4 including the biological and 
bias predictors. Only sampling abundance can be obtained from the 
GLMs, hence why (a) only shows results from the ZI models
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predictions increasingly outperform those of the GLM. This is 
because the zero component, which is combined with the count 
component to create the sampling abundance prediction, is able to 
predict the excess zeros caused by the biological driver, while the 
GLM cannot. Therefore, if high levels of biological zero inflation 
are suspected in the data, both the count and sampling abundance 

predictions should be considered and evaluated before choosing 
the best predictions of species abundance.

Reiterating our results from Simulation 1, when sampling is 
random there is no benefit of including the bias predictor in the 
zero component under any levels of sampling or biological zero 
inflation (Figure 4 and Appendix S1, Figure S1.6, top right panels). 

F I G U R E  3  Example maps of abundance for a hypothetical species (‘altitude species’) whose occurrence is positively influenced by 
altitude, produced from two Generalised Linear Models (GLMs) and two zero- inflated (ZI) models. Models were built with either data 
collected by randomly sampling grid cells (random) or with sampling bias (biased). Abundance maps from GLM3 (including the biological 
predictor only) and GLM4 (including both the biological and bias predictors) are produced using sampling abundance predictions (i.e. from 
the whole model). Both count abundance and sampling abundance predictions can be produced from the ZI models along with a map of the 
probability a cell is an excess zeros (zero). Both ZI models include a biological predictor (altitude) of both abundance and excess zeros, and 
bias predictor (distance from the nearest town) of abundance. ZI6 also includes ‘distance from the nearest town’ as a predictor of excess 
zeros. Individual cells are colour- coded based on abundance for the abundance predictions or on probability of being an excess zero for the 
zero predictions (high = red, low = blue)

True species abundance Distance from nearest town Altitude

Sampling Prediction GLM3 GLM4 ZI2 ZI6 Description

Biased

Count 

abundance 

(Count 
component)

ZI6 predictions accurately reflect 

the effect of altitude on abundance, 

with little influence of sampling 
bias. ZI2 predictions are strongly 

influenced by sampling bias, 

underestimating true abundance 
away from towns. 

Sampling 

abundance 
(whole model)

Abundance predictions of GLM4, 
ZI2 and ZI6 are strongly influenced 

by sampling bias, underestimating 

true abundance away from towns.

Zero 

(probability of 

being an excess 
zero)

ZI6 zero predictions accurately 

reflect the cause of excess ‘false 

zeros’ which is distance from 
nearest town caused by sampling 

bias. ZI2 zero predictions are not 

able to identify the cause of the 
excess zeros. 

Random

Count 

abundance 

(Count 
component)

ZI2 and ZI6 predictions accurately 
reflect the effect of altitude on 

abundance.

Sampling 

abundance 

(whole model)

GLM3, GLM4, ZI2 and ZI6 

predictions reflect the effect of 

altitude on abundance.

Zero 

(probability of 

being an excess 
zero)

ZI2 and ZI6 zero predictions both 
reflect the excess zeros in the data 

caused by incomplete sampling. 
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Under biased sampling scenarios, models accounting for bias (e.g. 
by including the bias predictor in the zero component as in ZI6) are 
most effective when there are high levels of sampling- related zero 
inflation and low levels of biological zero inflation. As either the area 
surveyed or biological zero inflation increases, the effectiveness of 
these models reduces compared to models that fail to account for 
bias (Figure 4, bottom right panel). Nevertheless, the majority of dif-
ferences seen between ZI models are relatively small compared to 
those between the ZI models and GLMs.

3.3  |  Simulation 3: comparing abundance versus 
presence– absence data across multiple spatial scales

The results from Simulation 3 support our hypothesis that, when deal-
ing with biased species data, modelling aggregated count data using ZI 
models is a better choice than modelling aggregated presence– absence 
or presence- only data, as is commonly done in traditional SDM stud-
ies, using approaches such as binomial GLMs or MaxEnt (Figure 5). 
The only model to perform consistently well across all spatial scales 
when dealing with the biased species data was the ZI model, which 
maintained strong correlations to the biological predictor (rs > 0.9) 
and low correlations to the bias predictor (−0.12 < rs <0.07) across all 
scales (Figure 5). Predicted maps of the altitude species distribution 
also show that the ZI model count abundance predictions provide the 

most accurate reflection of the true species distribution as the scale 
of data aggregation increases (Appendix S1, Figure S1.7). Binomial- 
GLM2 and MaxEnt2 models, which incorporate the bias predictor, 
produced predictions that are heavily influenced by sampling bias at a 
1- km scale, with strong correlations to the bias predictor (rs < −0.75) 
(Figure 5 and Appendix S1, Figure S1.7). These increase in strength 
as scale increases to 2 and 5 km, so that both model predictions pro-
duce correlations to the bias predictor close to 1 (rs < −0.92). Both 
MaxEnt1 and binomial- GLM1 (which do not include the bias predictor) 
were able to produce accurate predictions with the biased data at a 
1- km resolution, although performance declined as the scale became 
coarser. Even when the species data were collected using a random 
sampling strategy, the performance of the presence– absence models 
declined as the scale became coarser and more information was lost 
with data aggregation (Figure 5); this phenomenon was not seen in the 
ZI models and performance remained high as scale increased.

Model evaluation using mean AUC based on the presence– 
absence predictions also supports these findings (Figure 6 and 
Appendix S1, Figure S1.8). Across all three scales, the ZI model was 
best suited to model the biased species data compared to the MaxEnt 
and binomial GLM models that were fitted using the bias predictor 
(Figure 6). The presence– absence models have a much larger vari-
ance in performance than the ZI abundance models, especially at 
coarser scales, with some repetitions producing AUC values below 
0.5 and above 0.9 (Figure 6 and Appendix S1, Figure S1.8). The ZI 

F I G U R E  4  Comparisons of model predictive power of true abundance between a Generalised Linear Model (GLM) and two zero- inflated 
(ZI) models across varying levels of biological and sampling bias zero inflation. Values represent the mean difference in D (‘deviation from the 
best model’) between GLM4 (containing both biological and bias predictors), ZI2 (excludes the bias predictor from the zero component) and 
ZI6 (includes the bias predictor in the zero component). Biological zero inflation was increased by introducing a minimum altitude threshold 
below which the species cannot survive and therefore reducing its environmental niche. Sampling- related zero inflation was increased by 
increasing the number of grid cells sampled across the study area in increments of 10%. Negative (red) values show scenarios where the ZI 
model performs better than the GLM (left and middle panels) or where ZI6 performs better than ZI2 (right panel), whereas positive (blue) 
values show scenarios where GLM4 outperforms the ZI models or ZI2 outperforms ZI6. ‘R’ represents the values for the random species 
whose occurrence is not related to altitude

Random

R 0 50 100 125 150 175 200 R 0 50 100 125 150 175 200 R 0 50 100 125 150 175 200
1000 -1.63 -1.47 -1.63 -1.94 -2.23 -2.52 -3.56 -7.38 -1.64 -1.06 -1.19 -1.42 -1.55 -1.63 -1.99 -3.63 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.02
2000 -0.96 -0.83 -0.91 -1.02 -1.04 -1.11 -1.12 -1.34 -0.96 -0.83 -0.91 -1.02 -1.04 -1.12 -1.12 -1.34 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
3000 -0.59 -0.47 -0.52 -0.63 -0.50 -0.33 0.03 0.83 -0.59 -0.47 -0.53 -0.64 -0.51 -0.34 0.02 0.83 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00
4000 -0.37 -0.24 -0.17 -0.25 -0.07 0.15 0.78 2.40 -0.37 -0.25 -0.18 -0.26 -0.08 0.15 0.78 2.39 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00
5000 -0.22 -0.10 -0.06 0.10 0.16 0.50 1.27 3.60 -0.22 -0.09 -0.06 0.10 0.16 0.49 1.26 3.59 0.00 -0.01 0.00 0.00 0.01 0.01 0.01 0.00
6000 -0.13 -0.02 -0.03 0.10 0.44 0.78 1.63 4.43 -0.13 -0.02 -0.03 0.10 0.44 0.78 1.63 4.43 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
7000 -0.07 -0.01 -0.01 0.15 0.43 0.96 1.91 4.71 -0.07 -0.01 -0.01 0.15 0.43 0.96 1.90 4.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8000 -0.03 0.00 0.00 0.19 0.48 1.08 2.10 5.02 -0.03 0.00 0.00 0.19 0.48 1.08 2.10 5.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9000 -0.01 0.00 0.02 0.24 0.59 1.14 2.15 4.97 -0.01 0.00 0.02 0.24 0.59 1.14 2.15 4.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10000 0.00 0.00 0.03 0.28 0.65 1.22 2.21 5.09 0.00 0.00 0.03 0.28 0.65 1.22 2.21 5.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Biased

R 0 50 100 125 150 175 200 R 0 50 100 125 150 175 200 R 0 50 100 125 150 175 200
1000 -1.71 -1.58 -1.70 -2.02 -2.14 -2.39 -3.00 -4.80 -1.64 -1.44 -1.58 -2.00 -2.13 -2.48 -2.86 -4.69 -0.07 -0.13 -0.11 -0.02 0.06 0.09 0.08 0.05
2000 -1.04 -0.90 -1.00 -1.15 -1.16 -1.17 -1.44 -2.55 -0.95 -0.75 -0.86 -1.14 -1.23 -1.23 -1.49 -2.58 -0.09 -0.14 -0.13 0.00 0.00 0.07 0.05 0.02
3000 -0.68 -0.53 -0.57 -0.65 -0.55 -0.38 -0.07 0.70 -0.60 -0.40 -0.43 -0.64 -0.61 -0.45 -0.13 0.66 -0.09 -0.13 -0.14 -0.02 0.06 0.07 0.06 0.04
4000 -0.44 -0.32 -0.27 -0.30 -0.16 0.05 0.64 1.96 -0.37 -0.19 -0.14 -0.14 -0.22 -0.01 0.59 1.92 -0.07 -0.13 -0.13 -0.16 0.06 0.06 0.05 0.04
5000 -0.29 -0.16 -0.11 0.18 0.48 0.42 1.16 2.68 -0.23 -0.06 -0.06 0.04 0.05 0.35 1.11 2.65 -0.06 -0.10 -0.05 -0.06 0.04 0.06 0.05 0.03
6000 -0.18 -0.07 -0.05 0.10 0.30 0.61 1.45 3.18 -0.13 -0.02 -0.03 0.10 0.33 0.55 1.40 3.15 -0.05 -0.05 -0.01 0.00 -0.03 0.06 0.05 0.03
7000 -0.10 -0.03 -0.02 0.13 0.42 0.95 1.74 4.43 -0.07 -0.01 -0.02 0.13 0.41 0.90 1.71 4.42 -0.03 -0.03 0.00 0.00 0.01 0.04 0.03 0.01
8000 -0.05 -0.02 0.00 0.19 0.47 0.98 2.04 4.76 -0.03 0.00 0.00 0.18 0.47 0.94 2.01 4.75 -0.02 -0.01 0.00 0.00 0.00 0.04 0.03 0.01
9000 -0.02 -0.01 0.01 0.23 0.57 1.11 2.11 4.81 -0.01 0.00 0.01 0.23 0.57 1.10 2.06 4.80 -0.01 0.00 0.00 0.00 0.00 0.00 0.05 0.00
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model also outperformed several of the MaxEnt and binomial GLMs 
fitted without the bias predictor, including the MaxEnt1 model at a 
2- km scale and the binomial- GLM1 at a 5- km scale (Appendix S1, 
Figure S1.8), although it produced slightly lower mean AUC values 
than some of the presence– absence models when the bias predictor 
was excluded. Nevertheless, if the sampling bias source is unknown, 
it might be difficult to exclude completely predictors correlating 
with the bias, so choosing a ZI model is still likely to be the safest 
option to produce the best, most robust predictions least affected 
by sampling bias.

4  |  DISCUSSION

Sampling bias in species data is problematic for SDM, and many re-
searchers call for greater awareness and development of correction 
methods to deal with this issue (Araújo & Guisan, 2006; Bystriakova 
et al., 2012; Kramer- Schadt et al., 2013). Our simulations using ZI 
models highlight a novel approach for dealing with sampling bias and 

zero inflation in SDM, which we believe can be applied to a wide va-
riety of ecological and conservation research questions that use large 
databases of species records. Our results reveal that ZI models have 
the potential both to reduce the impact of bias on predictions which 
are used for biological inference, and to provide insights into previ-
ously unknown causes or correlates of sampling bias. This method 
can be used with both raw abundance data, and with abundance data 
created by summing occurrences from presence- only data across a 
larger spatial scale, and therefore offers an alternative to traditional 
presence- only SDM methods. As spatial occurrence data are often 
present at a finer scale than the environmental predictors, decisions 
about data aggregation have to be made when fitting distribution 
models. We found that even though information about the precise 
location of species occurrences is sacrificed, aggregating species oc-
currences into counts of abundance and fitting ZI models produces 
better estimates of a species distribution, especially when the species 
data are biased by sampling methods, than aggregating occurrences 
into presence– absence form at a coarser spatial scale, as is common 
with traditional SDM methods such as binomial GLMs or MaxEnt.

F I G U R E  5  Mean spearman’s rank correlation coefficients (rs) (±SE) between the model predictors (altitude and distance from nearest 
town) and model predictions for altitude species across three modelling scales: 1, 2 and 5 km and two sampling strategies (random and 
biased). Three types of model are compared: (1) binomial Generalised Linear Models (GLMs) that predict the probability of occurrence, (2) 
maximum entropy (MaxEnt) models that predict the probability of occurrence and (3) zero- inflated (ZI) models that predict the true (count) 
abundance of the species. Binomial- GLM1 and MaxEnt1 include only the biological predictor in the model, whereas Binomial- GLM2 and 
MaxEnt2 include both the biological and bias predictors. ZI6 model includes the bias and biological predictor in both the count and zero 
components
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Species distribution maps are an important resource for conser-
vation planners (Rodríguez et al., 2007), yet there is often little con-
sideration of inaccuracies or uncertainty in these maps or associated 
models (Elith et al., 2002; Zuquim et al., 2014). Our results show how 
the biological information value of maps based on GLM, MaxEnt and 
ZI sampling abundance predictions can be reduced by sampling bias. 
In contrast, the distribution maps produced from the predictions 
from the count component of ZI models are accurate reflections 
of the species niche and true abundance, even when species data 
are spatially biased, providing that the bias influence is accounted 
for in the model by included all predictors suspected of capturing 
or correlating with the bias in both ZI count and zero components. 
If in doubt about whether a predictor is likely to be a source of bias, 
inclusion in both parts will not only alleviate the problem of bias, but 
will also provide insight into whether it actually is introducing a large 
number of excess (‘false’) zeros. Additionally, ZI model coefficients 
allowed examination of potential causes of bias; in ZI6 (the model in-
cluding both the bias and biological predictor in the zero component) 
from Simulation 1, ‘distance from nearest town’ was influential only 
in the zero component, and was not spuriously identified as influ-
encing true abundance. Currently, there are few statistical models 
that allow post- modelling identification of bias sources. Many SDM 

techniques rely on prior understanding and some form of quantifi-
cation of the bias in order to remove it (Phillips, 2008), so ZI models 
provide an advantage over these traditional bias correction methods 
in their ability to shed light on potential causes of bias.

If all excess zeros are false zeros, count abundance predictions 
from ZI models should always reflect the true species niche, and 
the zero component will be modelling only excess zeros from non- 
biological, sampling processes. However, this scenario is unlikely in 
ecological systems. In reality, as in our simulations with the altitude 
and altitude_randomised species, the excess zeros will result from 
a combination of biological zero inflation and sampling zero infla-
tion. Therefore, the count abundance prediction may not always be 
predicting true abundance, and the zero component may actually 
be dominated by biological processes, as we suggest is the case for 
the results from Simulation 2. In this case, the sampling abundance 
prediction will actually be a more accurate reflection of true species 
abundance. Nevertheless, by examining the significance and influ-
ence of predictors in both components, their plausibility as causes of 
bias can be inspected— biological predictors of abundance are likely 
to be significant in both parts of the ZI model, whereas sampling 
predictors are unlikely to appear influential in the count component.

After identifying potential bias predictors, modellers can make 
more informed choices about whether to eliminate these predictors 
from either ZI component, whether the zero component is more 
heavily dominated by biological or sampling processes and if the 
count abundance or sampling abundance is more likely to reflect 
true species abundance. A good understanding of the biology of the 
species being modelled is therefore key. Additionally, despite the 
post- model fitting ability of ZI models to distinguish bias, beginning 
any analysis of a ZI dataset, it is important also to try and identify the 
source of excess zeros as either from biology or sampling processes 
(Martin et al., 2005). Consequently, although one benefit of ZI mod-
els is the ability to use different sets of covariates in the count and 
zero components (Lambert, 1992; Zuur et al., 2009), it is important 
only to include appropriate, relevant predictors in each part where 
possible.

The collection of species data varies widely in its scale and 
standardisation, from single museum specimens collected by natu-
ral history experts to more local, standardised recording schemes 
(Pocock & Evans, 2014) and to international, opportunistic recording 
schemes such as eBird (Sullivan et al., 2009). The more standardised 
and directed the protocols, the lower the likelihood of sampling bias 
and ‘false zeros’ in the data. In these cases, a simple Poisson or neg-
ative binomial GLM may suffice rather than a ZI model; at very low 
levels of zero inflation the performance of the GLMs was shown to 
be equal to that of the ZI models in Simulation 2. Nevertheless, our 
findings from Simulation 2 suggest that, regardless of biological zero 
inflation, when sampling is suspected to be very incomplete (esti-
mated coverage of total study area <~20%), ZI models will always the 
optimum choice. At low levels of biological zero inflation, we found 
ZI models to be more effective than GLMs even when sampling cov-
erage approached levels as high as 90%, as might be the case for spe-
cies with broad ranges that have been extensively documented, such 

F I G U R E  6  Evaluation of MaxEnt, Generalised Linear Model 
(GLM) and zero- inflated (ZI) model predictions of altitude species 
presence– absence sampled using a biased strategy across the study 
area. Mean area under the curve (AUC) (±SE and data range) across 
the 10 model repetitions is used to evaluate predictions across 
three scales of data aggregation: 1, 2 and 5 km. Three models 
are compared: (1) a ZI model able to account for the bias in the 
zero component (ZI6) (see Methods for more information on the 
conversion of ZI abundance predictions to presence– absence), (2) a 
MaxEnt model (MaxEnt2) that includes altitude and distance from 
town as predictors and (3) a binomial GLM (Binomial- GLM2), also 
including altitude and distance from town as predictors
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as important or conspicuous species in countries with long histories 
of species record keeping.

In addition to the Poisson distribution, the negative binomial dis-
tribution is also often used for count data, which can also be applied 
within a ZI modelling framework (Minami et al., 2007; Ridout et al., 
2001; Zuur et al., 2009). The negative binomial distribution is able 
to model an extra proportion of the excess zeros compared to the 
Poisson distribution through the use of an extra model parameter 
(ϴ) (Fisher, 1941) and can therefore account for biological aggrega-
tion and overdispersion in ecological data (Lindén & Mäntyniemi, 
2011). We chose not to investigate a ZI negative binomial model 
in these simulations to remove confusion when communicating our 
main message, although we acknowledge that under high levels of 
biological zero inflation (as in Simulation 2), such models may well 
be more effective than the ZI Poisson models. Therefore, when 
analysing presence- only species data suffering from high levels of 
sampling bias, a ZI Poisson model will usually be effective, but it is 
valuable to know that there are different ZI model types that can 
be used to address ecological or statistical issues that may arise in 
species data.

The majority of SDM research to date has focused on producing 
presence– absence or presence- only distribution maps of species or 
communities (Brotons et al., 2004; Lyashevska et al., 2016; Phillips 
et al., 2006). Species abundance maps are produced more infre-
quently, often due to the practical difficulty of measuring absolute 
abundance (Lyashevska et al., 2016). However, their ability to display 
extra information about density means they are often more infor-
mative and preferred (Barry & Welsh, 2002; Johnston et al., 2015; 
Pearce & Ferrier, 2001).

Although count data are known commonly to suffer from zero 
inflation, ZI models have been used to produce accurate species 
abundance maps from systematically collected species data in very 
few studies (Bouyer et al., 2015; Lyashaveska et al., 2016), and 
none have acknowledged or explored bias in their data. It is also 
not recommended to use SDM to predict species abundance from 
presence- only or presence– absence data (Jiménez- Valverde et al., 
2021), so ZI models that fit abundance by default should be able to 
cover this methodology gap in the field of SDM. Additionally, scale is 
hugely important in SDM. Species distributions are often modelled 
at coarse resolutions across national or international scales due to 
the availability of predictors, even though occurrences relate more 
to localised environmental factors (Guisan et al., 2007; Kuemmerlen 
et al., 2014). The coarser the grain size used in presence– absence or 
presence- only SDM, the more the raw occurrences are aggregated 
into a binary variable and density information is lost. Therefore, it is 
likely that at coarse resolutions, using abundance rather than occur-
rence data, preserve more information and will produce more accu-
rate maps of habitat suitability.

Our findings from Simulation 3 suggest that when having to de-
cide how to aggregate data to match the coarser resolution of the 
environmental predictors, the best method is to aggregate species 
occurrences into counts of abundance and fit using a ZI model, rather 
than aggregate into presence– absence data and fit using a traditional 

SDM method such as MaxEnt. This provides two main benefits over 
presence– absence methods in that (a) ZI models are able to identify 
and account for bias without prior knowledge of the bias sources and 
(b) extra information about species abundance is retained and mod-
elled. We found that as scale became increasingly coarser, only the ZI 
models retained a high level of predictive power and were an accurate 
reflection of species niche compared to MaxEnt or binomial GLMs, es-
pecially when the data suffered from sampling bias. We believe that ZI 
models have an advantage over other statistical methods in that they 
can be used with either presence– absence data or abundance data 
collected from citizen science projects— presence– absence data can 
just be aggregated into a count at a particular resolution. Furthermore, 
scale was shown to have little influence on the predictive power of 
ZI models providing bias was accounted for. Nevertheless, this was 
only simulated across relatively small resolutions (up to 5 km) due to 
the limitations of the study area and requirement for ZI data, whereas 
many studies map distributions at larger scales (>10 km) (Luoto et al., 
2007; Thuiller et al., 2006). It is therefore uncertain whether this pat-
tern holds true across more coarse scales of analysis.

In this paper, we have investigated the performance of ZI mod-
els under a relatively restricted set of scenarios. We acknowledge 
that our findings may therefore be case specific and we are ad-
dressing this with ongoing research (Nolan et al., unpubl.). For 
example, we chose to use a simple scenario in which only two 
predictors, a biological predictor and a bias predictor, generate 
patterns in the species distribution. The altitude species was as-
signed a simple preference for high altitudes, when in fact, there 
are likely several different environmental influences on the species 
niche. Furthermore, some of these biological predictors of species 
presence will also predict sampling bias. Therefore, it is important 
that prior consideration is given to the possible influences of any 
predictor included in the model on both ecological processes and 
sampling behaviour before it is decided whether to include it in 
either part of the ZI model.

GLMs, and by extension ZI models, have been criticised for their 
inability to capture the complex, nonlinear relationships which may 
often characterise species responses to the environment, in contrast 
to more modern methods such as MaxEnt or other machine learn-
ing techniques which are more flexible (Austin, 2002). Nevertheless, 
GLMs and ZIs also have some clear benefits, such as the ease with 
which they can be applied, and the transparency of their design. Here, 
we have shown an additional benefit of ZI models not yet available 
with any other modelling approach— the ability to simultaneously ac-
count for bias and to make inferences about it, when predicting dis-
tributions from incomplete sampling. We believe that our approach 
using ZI models has broad applicability to a variety of scenarios when 
bias is present, and there are suspected predictors of bias available. 
ZI models should be especially valuable when species abundance is 
of interest to the modeller, such as when modelling distributions of 
individual large animals or trees. Although we acknowledge that GLMs 
and ZI models have limitations, there is a range of options for more 
complex versions of these models, such as those incorporating poly-
nomial terms, interactions and LASSO variable selection (Hastie et al., 



    |  15NOLAN et AL.

2009; Vollering et al., 2019), which might allow such models to capture 
nonlinear/complex responses to the environment at the same time as 
modelling the causes of excess zeros.

In our simulations, we assume that all ‘false absences’ are due to 
sampling bias, but it is likely that in many cases, particularly for rare or 
cryptic species, they are also generated by detection errors (Dickinson 
et al., 2010; Fitzpatrick et al., 2009; Kosmala et al., 2016). The spe-
cies range size and the scale of detectability of the individuals is likely 
to influence the interpretation of the model ‘abundance’ predictions. 
For example, underestimation of true abundance could occur when 
modelling small organisms which appear frequently during the sur-
vey, and will be more representative of the likelihood of successfully 
sampling the species. On the other hand, overestimation could occur 
when modelling large, mobile organisms that cover multiple sampling 
locations, so prediction abundance might be a proxy of the probability 
of encountering one of a small number of individuals. Hence, there 
may be three sources of excess zeros, namely true zeros from unsuit-
able habitat, false zeros from lack of sampling and false zeros from 
detection error. When detection errors are significant, ZI models will 
not be able to distinguish between the different types of false zeros; 
but by including predictors in both the count and zero components of 
the model that capture the processes generating all types of zeros, we 
believe that ZI models will still be able (mostly) to account for these 
excess ‘false’ zeros, and combined with expert knowledge can provide 
some information about their sources.

5  |  CONCLUSION

Large collections of species data are extremely useful for SDM and 
conservation, and yet are limited by issues associated with the re-
cording processes, including sampling bias and zero inflation. Our 
simulations show that ZI models can fit biased data and identify 
sources of bias. Most importantly for conservation, by using only 
predictions from the count component of the ZI model (i.e. the count 
abundance predictions), biased species data can be used to produce 
distribution maps comparable to those using unbiased data. We also 
highlight the importance of considering the use of abundance data 
in SDM, especially at large spatial scales, when valuable ecological 
information about density is lost if data in each cell are converted 
to presence– absence or presence- only. ZI models are advantageous 
compared to other commonly used SDM techniques such as MaxEnt 
owing to their ability to retain information about abundance and 
also to identify and remove bias without prior knowledge of the bias 
sources. We believe ZI models have been largely overlooked in eco-
logical research, even though they have a huge potential to be use-
ful in SDM, and could have great benefits for conservation and our 
environment.
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